Shell Investments in Alternative Energy Stocks

https://inhabitat.com

It is possible to have a portfolio which profitably (that's the key word, is it not?) invests in alternative energy funds. “Green” energy production is expected to be a multi-billion (in today's dollars) industry by 2013.

The most recently developed wind-turbine technologies have brought us wind-produced energy which is more cost efficient as well as more widespread. More state-of-the-art wind energy technologies are typically more market competitive with conventional energy technologies. The newer wind-power technologies don't even kill birds like in days of old! Wind energy production is a growing technology, and companies engaged in it would make up an excellent part of a growth or aggressive growth portfolio.

Next to consider are solar cell, or photovoltaic cell, technologies. These are to be found implemented in pocket calculators, private property lights, US Coast Guard buoys, and other areas. More and more they find their way onto the roofs of housing and commercial buildings and building complexes. Cost is falling. Their energy efficiency (the ratio of the amount of work needed to cause their energy production versus the actual energy production) is steadily on the rise. As an example, the conversion efficiency of silicon cells has increased from a mere four percent in 1982 to over 20% for the latest technologies. Photovoltaic cells create absolute zero pollution as they are generating electrical power. However, photovoltaic cellls are not presently as cost effective as “utility produced” electricity. “PV” cells are not [capable at present for producing industrial-production amounts of electricity due to their present constraints on space. However, areas where photovoltaic cell arrays could be implemented are increasingly available. In sum, costs are going down while efficiency is rising for this alternative fuel technology.

Many alternative energy investment portfolio advisors are confident that alternative energies derived from currents, tidal movement, and temperature differentials are poised to become a new and predominant form of clean energy. The French are actually fairly advanced at hydro power generation, and numerous studies are being made in Scotland and the US along these sames lines. Some concerns  center around the problems with the deterioration of metals in salt water, marine growth such as barnacles, and violent storms which have all been disruptions to energy production in the past. However, these problems for the most part seem to be cured through the use of different, better materials. Ocean-produced energy has a huge advantage because the timing of ocean currents and waves are well understood and reliable.

Investments in hydro-electric technology have grown in the last two decades. Hydro-electric power is clean; however, it's also limited by geography. While already prominent as power generation, the large, older dams have had problems with disturbing marine life. Improvements have been made on those dams in order to protect marine life, but these improvements have been expensive. Consequently, more attention is now being paid to low-impact "run-of-the-river" hydro-power plants, which do not have these ecological problems.

The reality is, the energy future is green, and investors would do well to put their money out wisely, with that advice in their minds.

solar panels, solar system, electricity, solar, windmill, solar energy,
renewable energy, wind turbine, solar lights, renewable resources, wind energy,
solar power, solar charger, solar cell, sunpower, solar panel cost, solar battery,
solar water heater, photovoltaic, sources of energy, solar panel price, wind power,
electrical energy, electric generator, renewable energy sources, green energy, wind farm,
energy efficiency, green power, biomass energy

Global Investment into Renewable Alternative Energy Research and Development

https://www.dreamstime.com

The US government must continue to back the expansion of the role of alternative energy research and development and its implementation by companies and homeowners. Although this writer believes in the reign of the free market and that “that government is best which governs least”, our current system has companies and people expecting federal backing of major initiative with direct investment, in the form of tax breaks, rebate incentives, and even direct central bank investment into the alternative energy industry.

The US and its citizenry need to invest all of the time and energy that they can spare to the conversion from a fossil fuel burning society to one that is green for several different reasons. The green economy will not harm the environment or the quality of our air like fossil fuel burning does. We can become the energy independent nation that we need to be by cutting away our need to import oil, especially oil that is produced by anti-American nations such as Iran.  Ultimately, renewable energies and extremely efficient energies like atomic energy are far less expensive than the continuous mining and drilling for fossil fuels.  If we do not invest in our future now, catastrophe awaits us. We are going to need to consume more energy than ever in our history as we sail into the 21st century and beyond—our dependency on foreigners for meeting these energy needs only leaves us open to sabotage while draining our coffers in order to fill other nations'.

It can be argued that federal, state, and local governments should work in conjunction on the issue of alternative energy research and development and implement mandatory programs for new home construction and all home remodeling that stipulate the installation of alternative energy power sources—eventually over a certain period of years transforming into 100% installation of alternative energy sources for any new home or corporate building—as well as backing a similar program to have all new vehicles produced in the nation be hybrid vehicles or hydrogen fuel cell powered vehicles by the year 2020. All levels of government could also impose mandatory compliance laws on construction and utilities companies. The utility companies in all 50 states should be required to invest in alternative energy research and development while also being required to buy back, at fair rates, excess energy produced by homeowners through their use of alternative energy power sources. Strong financial incentives need to be in place for new companies to invest in developing renewable energies. This would not only make the US energy independent at the fastest possible rate, but it would stimulate the growth of the economy and provide tens of thousands of new, good-paying jobs for people.

Alternative energy generation in the forms of solar, wind, hydroelectric, biofuel, geothermal, and atomic; alternative energy storage systems such as more efficient batteris and hydrogen fuel cells; and alternative energy-furthering infrastructures with superior energy efficiency all need to be brought into the affordable price range through development. Government investment into these matters would surely help us along.

solar panels, solar system, electricity, solar, windmill, solar energy,
renewable energy, wind turbine, solar lights, renewable resources, wind energy,
solar power, solar charger, solar cell, sunpower, solar panel cost, solar battery,
solar water heater, photovoltaic, sources of energy, solar panel price, wind power,
electrical energy, electric generator, renewable energy sources, green energy, wind farm,
energy efficiency, green power, biomass energy


Best Investing in Alternative Energy Stocks and Shares in the World

http://blog.slashcarbon.com

Alternative energy stock portfolios are a great part of a modern investor's financial plan, due to the fac that there is so much upward potential. These make excellent long term growth investment vehicles, and the money put into them by you, the investor, serves to further the cause of implementing the alternative energy power sources that we need as we sail into the 21st century and beyond.

Analysts predict that by 2013, the alternative energy industry will be a $13 billion dollar industry in today's dollars. This figure bespeaks an enormous return on investment. Indeed, if you were to invest in a start-up alternative energy company, you might find yourself having invested in the next Microsoft in terms of return on investment. People are fed up with the rising costs of gasoline—while this alone is not sufficient understanding of the need for developing alternative energy sources, it is a factor which can act as a market maker—meaning for you that investments in alternative energy companies makes a lot of financial sense.

However, this does not mean that you don't first want to do some careful research into alternative energy stocks, perhaps with the help of a financial planner. “A few alternative-energy companies are going after the right markets but that doesn't mean you should go buy every name in the sector. Investors need to be cautious about chasing the stocks,” says Sanjay Shrestha, who is an analyst at First Albany Capital. And if you are an investor, then you know that the problem in this sector is that nearly every single one of the major players in the alternative energy for profit game are start-ups or in the very early stages of growth. This means for you that they have relatively minuscule (even if rapidly growing) sales, and no expected profitability in the near term or history of earnings for you to be able to research. This can lead to some bubbling, as with what happened to the dot-com industry at the turn of the 21st century. Bubbling in the stock market is not a good thing for investors.

Ananlysts and financial planners can play a crucial role in helping you get it right with alternative energy investing. “We don't play around in the tiny cap stocks that have technology and not much revenue—the 'hope' stocks. We invest in companies with clear cash-generation plans in place,” are the words of Ben walker, who is a senior portfolio manager at the Gartmore Global Utilities fund out of London.

Still, the outlook is very positive overall—and healthy. “It is good to see that the number of renewable energy funds and the amount of money flowing into these funds is increasing,” according to chief executive of UK alternative elecricity supplier Good Energy Juliet Davenport. “The renewable generation market is at an important stage in its development; it needs the continued support of the consumer, investor and government to ensure that it reaches its potential and really starts to make a difference to climate change.”

solar panels, solar system, electricity, solar, windmill, solar energy,
renewable energy, wind turbine, solar lights, renewable resources, wind energy,
solar power, solar charger, solar cell, sunpower, solar panel cost, solar battery,
solar water heater, photovoltaic, sources of energy, solar panel price, wind power,
electrical energy, electric generator, renewable energy sources, green energy, wind farm,
energy efficiency, green power, biomass energy


How to Find The Seek Grants for Alternative Energy R & D Source

http://poststar.com

If you are someone who wishes to begin researching and developing alternative energy technologies and you would want to be set up as a not-for-profit organization or entity, you will want to look into getting government grants, on both the state and the federal levels. Government grants for alternative energy research and development have been highly touted by politicians on local, state, and federal levels in recent years, all the way up to the President himself. This is due to the fact that we now recognize as a society that we need to seek out and develop alternative energy sources to those of the fossil fuels that we presently depend upon, as these fuels are not only slowly but surely running out (at least cheap access to digging them up is running out), but also damaging to the environment and air quality.

There is a fairly vast array of government grant programs available for you to check into. The great and most important thing to keep in mind about a government grant is that it's essentially free money. It is not a loan, you don't pay any interest, and you don't ever have to give the money back. However, qualifying for these grants, as you might imagine with something involving the government and free money, has quite a lot of restrictions attached to it. Not only is qualification based on purpose and need in the eyes and opinions of government bureaucrats, but just because you qualify does not mean that you necessarily get the grant. As Marshall McLuen put it, “the medium is the message”. The fact of the matter is that it is typically easier to apply for and qualify to receive a business loan—but then, that would not be free money, that would be something you owed to someone, and with interest on top.

There are professional grant writers who know how to write proposals in such a way that they get around the heavy load of restrictions set up by the government, and you might need to resort to one of these. Even governments employ professional grant writers to seek money from other branches of the government, such as a country government needing funding from the state or the federal government. These people also keep abreast of what government grants are still or newly available and what ones have been removed from the table. It's an intricate web, so one must not get tangled up in when seeking needed financial backing for alternative energy research and development. In fact, it is so complex that in the last decade or so the ranks of profession writers, as both individuals and as entire companies, have swelled. It is a profitable business—and this can make it fraught with illegal actions and controversial claims.

Nevertheless, each year there are many thousands of grants awarded throughout the United States for the purpose of helping the public. And again, with the government endorsement of grant money to be given to alternative energy researchers, you could very well get what you seek.

solar panels, solar system, electricity, solar, windmill, solar energy,
renewable energy, wind turbine, solar lights, renewable resources, wind energy,
solar power, solar charger, solar cell, sunpower, solar panel cost, solar battery,
solar water heater, photovoltaic, sources of energy, solar panel price, wind power,
electrical energy, electric generator, renewable energy sources, green energy, wind farm,
energy efficiency, green power, biomass energy

The Government Grants to Find Alternative Energy Source

https://www.canadastartups.org

In his State of the Union Address for 2007, President George W. Bush called for a 22%  increase in federal grants for research and development of alternative energy. However, in a speech he gave soon after, he said to those assembled, I recognize that there has been some interesting mixed signals when it comes to funding.

Where the mixed signals were coming from concerned the fact that at the same time the President was calling on more government backing for alternative energy research and development, the NREL—the National Renewable Energy Laboratory of Golden, Colardo—was laying off workers and contractors left and right. Apparently, the Laboratory got the hint, because soon after the State of the Union Address, everyone was re-hired. The second speech of the President's was actually given at the NREL. There is almost unanimous public support for the federal backing through research grants, tax breaks, and other financial incentives of research and development of alternative energy sources.

The NREL is the nation's leading component of the National Bioenergy Center, a “virtual” center that has no central bricks and mortar office. The NREL's raison d'etre is the advancing of the US Department of Energy's and the United States' alternative energy objectives. The laboratory's field researchers and staff scientists, in the words of Laboratory Director Dan Arvizu, “support critical market objectives to accelerate research from scientific innovations to market-viable alternative energy solutions. At the core of this strategic direction are NREL's research and technology development areas. These areas span from understanding renewable resources for energy, to the conversion of these resources to renewable electricity and fuels, and ultimately to the use of renewable electricity and fuels in homes, commercial buildings, and vehicles.” The federally-backed Laboratory directly helps along the United States' objectives for discovering renewable alternative fuels for powering our economy and our lifestyles.

The NREL is set up to have several areas of expertise in alternative energy research and development. It spearheads research and development efforts into renewable sources of electricity; these would include such things as solar power, wind power, biomass power, and geothermal power. It also spearheads research and development of renewable fuels for powering our vehicles such as biomass and biodiesel fuels and hydrogen fuel cells. Then, it seeks to develop plans for integrated system enginnering; this includes bringing alternative energy into play within buildings, electrical grids and delivery systems, and transportation infrastructures. The Laboratory is also set up for strategic development and analysis of alternative energy objectives through the forces of economics, market analysis and planning, and alternative energy investment portfolios structurings.

The NREL is additionally equipped with a  Technology Transfer Office. This Office supports laboratory scientists and engineers in the practical application of and ability to make a living from their expertise and the technologies they develop. NREL's research and development staff and its facilities are recognized for their remarkable prowess by private industry, which is reflected in the hundreds of collaborative  projects and licensed technologies that the Laboratory now has with both public and private partners.

solar panels, solar system, electricity, solar, windmill, solar energy,
renewable energy, wind turbine, solar lights, renewable resources, wind energy,
solar power, solar charger, solar cell, sunpower, solar panel cost, solar battery,
solar water heater, photovoltaic, sources of energy, solar panel price, wind power,
electrical energy, electric generator, renewable energy sources, green energy, wind farm,
energy efficiency, green power, biomass energy


The Geothermal Power as Alternative Energy Source

http://license.umn.edu

We should be doing everything possible to develop geothermal energy technologies. This is a largely untapped area of tremendous alternative energy potential, as it simply taps the energy being naturally produced by the Earth herself. Vast amounts of power are present below the surface crust on which we move and have our being. All we need do is tap into it and harness it.

At the Earths' core, the temperature is 60 times greater than that of water being boiled. The tremendous heat creates pressures that exert themselves only a couple of miles below us, and these pressures contain huge amounts of energy. Superheated fluids in the form of magma, which we see the power and energy of  whenever there is a volcanic eruption, await our tapping. These fluids also trickle to the surface as steam and emerge from vents. We can create our own vents, and we can create out own containment chambers for the magma and convert all of this energy into electricity to light and heat our homes. In the creation of a geothermal power plant, a well would be dug where there is a good source of magma or heated fluid. Piping would be fitted down  into the source, and the fluids forced to the surface to produce the needed steam. The steam would turn a turbine engine, which would generate the electricity.

There are criticisms of geothermal energy tapping which prevent its being implemented on the large scale which it should be. Critics say that study and research to find a resourceful area is too costly and takes up too much time. Then there is more great expense needed to build a geothermal power plant, and there is no promise of the plant turning a profit. Some geothermal sites, once tapped, might be found to not produce a large enough amount of steam for the power plant to be viable or reliable. And we hear from the environmentalists who worry that bringing up magma can bring up potentially harmful materials along with it.

However, the great benefits of geothermal energy would subsume these criticisms if only we would explore it more. The fact that geothermal energy is merely the energy of the Earth herself means it does not produce any pollutants. Geothermal energy is extremely efficient—the efforts needed to channel it are minimal after a site is found and a plant is set up. Geothermal plants, furthermore, do not need to be as large as electrical plants, giant dams, or atomic energy facilities—the environment would thus be less disrupted. And, needless to say, it is an alternative form of energy—using it would mean we become that much less dependent on oil and coal. Perhaps most importantly of all—we are never, ever going to run out of geothermal energy, and it is not a commodity that would continuously become more expensive in terms of real dollars as time passes, since it is ubiquitous. Geothermal energy would be, in the end, very cheap, after investigation and power plant building costs are recouped.

solar panels, solar system, electricity, solar, windmill, solar energy,
renewable energy, wind turbine, solar lights, renewable resources, wind energy,
solar power, solar charger, solar cell, sunpower, solar panel cost, solar battery,
solar water heater, photovoltaic, sources of energy, solar panel price, wind power,
electrical energy, electric generator, renewable energy sources, green energy, wind farm,
energy efficiency, green power, biomass energy


Renewable Energy Biofuels as Alternative Sources of Energy

https://financialtribune.com

Biofuels are produced by converting organic matter into fuel for powering our society. These biofuels are an alternative energy source to the fossil fuels that we currently depend upon. The biofuels umbrella includes under its aegis ethanol and derivatives of plants such as sugar cane, as well aS vegetable and corn oils. However, not all ethanol products are designed to be used as a kind of gasoline. The International Energy Agency (IEA) tells us that ethanol could comprise up to 10 percent of the world's usable gasoline by 2025, and up to 30 percent by 2050. Today, the percentage figure is two percent.

However, we have a long way to go to refine and make economic and practical these biofuels that we are researching. A study by Oregon State University proves this. We have yet to develop biofuels that are as energy efficient as gasoline made from petroleum. Energy efficiency is the measure of how much usable energy for our needed purposes is derived from a certain amount of input energy. (Nothing that mankind has ever used has derived more energy from output than from what the needed input was. What has always been important is the conversion—the end-product energy is what is useful for our needs, while the input energy is just the effort it takes to produce the end-product.) The OSU study found corn-derived ethanol to be only 20% energy efficient (gasoline made from petroleum is 75% energy efficient). Biodiesel fuel was recorded at 69% energy efficiency. However, the study did turn up one positive: cellulose-derived ethanol was charted at 85% efficiency, which is even higher than that of the fantastically efficient nuclear energy.

Recently, oil futures have been down on the New York Stock Exchange, as analysts from several different countries are predicting a surge in biofuel availability which would offset the value of oil, dropping crude oil prices on the international market to $40 per barrel or thereabouts.  The Chicago Stock Exchange has a grain futures market which is starting to “steal” investment activity away from the oil futures in NY, as investors are definitely expecting better profitability to start coming from biofuels. Indeed, it is predicted by a consensus of analysts that biofuels shall be supplying seven percent of the entire world's transportation fuels by the year 2030. One certain energy markets analyst has said, growth in demand for diesel and gasoline may slow down dramatically, if the government subsidizes firms distributing biofuels and further pushes to promote the use of eco-friendly fuel.

There are several nations which are seriously involved in the development of biofuels. 

There is Brazil, which happens to be the world's biggest producer of ethanols derived from sugars. It produces approximately three and a half billion gallons of ethanol per year.

The United States, while being the world's greatest oil-guzzler, is already the second largest producer of biofuels behind Brazil.

The European Union's biodiesel production capacity is now in excess of four million (British) tonnes. 80 percent of the EU's biodiesel fuels are derived from rapeseed oil; soybean oil and a marginal quantity of palm oil comprise the other 20 percent.

solar panels, solar system, electricity, solar, windmill, solar energy,
renewable energy, wind turbine, solar lights, renewable resources, wind energy,
solar power, solar charger, solar cell, sunpower, solar panel cost, solar battery,
solar water heater, photovoltaic, sources of energy, solar panel price, wind power,
electrical energy, electric generator, renewable energy sources, green energy, wind farm,
energy efficiency, green power, biomass energy, Biofuels 

An Energy Alternative Source : Free Energy

http://raiot.in

There has been much debate about what is often called “free” energy—energy that can supposedly, with the right technology, be drawn straight out of the atmosphere, and in very abundant supply. The debates are about whether the stuff actually exists or not, what it would actually cost were it to be harnessed, and if it does exist is it truly as abundant and efficient as it's being made out to be by proponents of research and development into this potential alternative energy source.

When one hears the phrase “free energy device”, one might be hearing about one of several different concepts. This might mean a device for collecting and transmitting energy from some source that orthodox science does not recognize; a device which collects energy at absolutely no cost; or an example of the legendary perpetual motion machine. Needless to say, a perpetual motion machine—a machine which drives itself, forever, once turned on, therefore needing no energy input ever again and never running out of energy—is impossible. However, it is not so simple to say that a new technology for harnessing the energy “floating” in the atmosphere is impossible. New technologies replace old ones all the time with abilities that had just been “impossible”. Harnessing the power of the atom for providing huge amounts of energy was “impossible” until the 1940s. Flying human beings were an “impossible” thing until the turn of the 20th century and the Wright Brothers' flight.

The biggest claim of the proponents of “free” energy is that enormous amounts of energy can be drawn from the Zero Point Field. This is a quantum mechanical state of matter for a defined system which is attained when the system is at the lowest possible energy state that it can be in. This is called the “ground state” of the system. Zero Point Energy (ZPE) is sometimes referred to as “residual” energy and it was first proposed to be usable as an alternative form of energy way back in 1913 by Otto Stern and Albert Einstein. It is also referred to as “vacuum energy” in studies of quantum mechanics, and it is supposed to represent the energy of totally empty space. This energy field within the vacuum has been likened to the froth at the base of a waterfall by one of the principal researchers into and proponents of Hal Puthof. Puthof also explains, the term 'zero-point' simply means that if the universe were cooled down to absolute zero where all thermal agitation effects would be frozen out, this energy would still remain. What is not as well known, however, even among practicing physicists, are all the implications that derive from this known aspect o quantum physics. However, there are a group of physicists—myself and colleagues at several research labs and universities—who are examining the details, we ask such questions as whether it might be possible to 'mine' this reservoir of energy for use as an alternative energy source, or whether this background energy field might be responsible for inertia and gravity. These questions are of interest because it is known that this energy can be manipulated, and therefore there is the possibility that the control of this energy, and possibly inertia and gravity, might yield to engineering solutions. Some progress has been made in a subcategory of this field (cavity quantum electrodynamics) with regard to controlling the emission rates of excited atoms and molecules, of interest in laser research and elsewhere.

solar panels, solar system, electricity, solar, windmill, solar energy,
renewable energy, wind turbine, solar lights, renewable resources, wind energy,
solar power, solar charger, solar cell, sunpower, solar panel cost, solar battery,
solar water heater, photovoltaic, sources of energy, solar panel price, wind power,
electrical energy, electric generator, renewable energy sources, green energy, wind farm,
energy efficiency, green power, biomass energy

An Alternative Energy Source Education Method

https://www.independent.ie

The best method of educating young people about alternative energy production that this writer has ever witnessed is the use of the PicoTurbine Company's kits, books, and projects. The PicoTurbine Company produces these things for the purpose of advancing the cause of renewable (alternative) energy and getting young people to look into the future and see that the environment that's being seeded now is the one they will inherit then. As the late, great Gerry Ford said, “Things are more like they are now than they have ever been before.” If we are to change the future world for the better, then it starts right here and now with the advent of “green” energy systems.

One of the core concepts of PicoTurbine can be stated: Tell me, and I will forget. Show me, and I might remember some of it. Involve me, and I will master it. Based on this old tried and true adage, the kits that the company produces come with activity suggestions to get the young people into hands-on learning situations. One suggestion of the company is to demonstrate how heat can be produced by wind energy (the company's specialty) through using a “picture wire” for the heating element. PicoTurbine has found that people typically think of wind energy as being “cold” energy, and are pleasantly surprised to see how wind can be used for generating heat in the home. Another project suggestion that the company offers is to have different groups split off in the classroom and then compare their respective wind turbines that they have built. They can see which ones produce the most or least electricity; which ones start up with need of the least amount of wind power; and for very young children, which ones have the most aesthetic appeal.

There is a core curriculum that PicoTurbine has in mind for teachers to instill in their pupils. Renewable, alternative sources of energy include solar, hydroelectric, geothermal, and biomass in addition to wind-produced energy. When we use more alternative sources of energy, we decrease our nation's dependence on foreign oil supplies, which often come from nations who cannot really be called our “allies”. Alternative energy is already becoming cost effective when set against the fossil fuels that we are so reliant on currently.

PicoTurbine points out that wind farms and solar arrays are already letting their makers enjoy commercial success. In the last two decades, the cost of photovoltaic cells expressed in terms of per-watt has gone from nearly $1000 to just $4! It has been predicted by analysts that by the year 2015, the cost per watt should only be about $1 (in today's dollars). Students also need to be taught about the hidden cost of fossil fuels: pollution and environmental degradation. Air pollution from burning fossil fuels has been shown through studies to increase incidences of asthma attacks, heighten the effects of allergies, and even cause cancer. Switching over to clean, green energy found in the alternative forms would prevent air pollution and help bolster the environment. 

solar panels, solar system, electricity, solar, windmill, solar energy,
renewable energy, wind turbine, solar lights, renewable resources, wind energy,
solar power, solar charger, solar cell, sunpower, solar panel cost, solar battery,
solar water heater, photovoltaic, sources of energy, solar panel price, wind power,
electrical energy, electric generator, renewable energy sources, green energy, wind farm,
energy efficiency, green power, biomass energy

Alternative Energy Source in Ireland

http://besthalogenheaters.co.uk

The Irish are currently pursuing energy independence and the further development of their robust economy through the implementation of research and development into alternative energy sources. At the time of this writing, nearly 90% of Ireland's energy needs are met through importation—the highest level of foreign product dependence in the nation's entire history.  This is a very precarious situation to be in, and the need for developing alternative energy sources in Ireland is sharply perceived. Ireland also seeks to conserve and rejuvenate its naturally beautiful environment and to clean up its atmosphere through the implementation of alternative energy supplies. The European Union has mandated a  reduction in sulphuric and nitric oxide emissions for all member nations. Green energy is needed to meet these objectives. Hydroelectric power has been utilized in Ireland in some areas since the 1930s and has been very effective; however, more of it needs to be installed.  Ireland also needs to harness the wave power of the Atlantic Ocean, which on its west coast is a potential energy supply that the nation has in great store.

Ireland actually has the potential to become an energy exporter, rather than a nation so heavily dependent on energy importation. This energy potential resides in Ireland's substantial wind, ocean wave, and biomass-producing alternative energy potentials. Ireland could become a supplier of ocean wave-produced electricity and biomass-fueled energy to continental Europe and, as they say, “make a killing”. At the present time, Ireland is most closely focused on reaching the point where it can produce 15% of the nation's electricity through wind farms, which the government has set as a national objective to be reached by 2010. But universities, research institutes, and government personnel in Ireland have been saying that the development of ocean wave energy technology would be a true driving force for the nation's economy and one which would greatly help to make Ireland energy independent. A test site for developing wave ocean energy has been established in Ireland, less than two miles off the coast of An Spideal in County Galway Bay.  This experimental ocean wave harnessing site is known as “Wavebob”. The most energetic waves in the world are located off the West coast of Ireland, says Ireland's Marine Institute CEO Dr. Peter Heffernan. The technology to harness the power of the ocean is only just emerging and Ireland has the chance to become a market leader in this sector. David Taylor, CEO of the Sustainable Energy Initiative,or SEI, tells us that SEI is committed to innovation in the renewable energy sector. Wave energy is a promising new renewable energy resource which could one day make a significant contribution to Ireland's electricity generation mix thereby further reducing our reliance on fossil fuels.

Padraig Walshe, the president of the Irish Farmers Association, tells us that with the closure of the sugar beet industry, an increasing amount of Irish land resources will become available for alternative uses, including bioenergy production. Today, renewable energy sources meet only 2% of Ireland’s total energy consumption. From a farming perspective, growing energy crops will only have a viable future if they provide an economic return on investment and labour, and if the prospect of this return is secure into the future. Currently the return from energy crops is marginal and is hampering the development of the industry. Biomass energies need to be further researched by Ireland.

solar panels, solar system, electricity, solar, windmill, solar energy,
renewable energy, wind turbine, solar lights, renewable resources, wind energy,
solar power, solar charger, solar cell, sunpower, solar panel cost, solar battery,
solar water heater, photovoltaic, sources of energy, solar panel price, wind power,
electrical energy, electric generator, renewable energy sources, green energy, wind farm,
energy efficiency, green power, biomass energy

Alternative Energy Source from the Ocean

https://inhabitat.com

Ocean Thermal Energy Conversion (OTEC) was conceived of by the French engineer Jacques D'Arsonval in 1881. However, at the time of this writing the Natural Energy Laboratory of Hawaii is home to the only operating experimental OTEC plant on the face of the earth. OTEC is a potential alternative energy source that needs to be funded and explored much more than it presently is. The great hurdle to get over with OTEC implementation on a wide and practically useful level is cost. It is difficult to get the costs down to a reasonable level because of the processes presently utilized to drive OTEC. Ocean thermal energy would be very clean burning and not add pollutants into the air. However, as it presently would need to be set up with our current technologies, OTEC plants would have the capacity for disrupting and perhaps damaging the local environment.

There are three kinds of OTEC. 

“Closed Cycle OTEC” uses a low-boiling point liquid such as, for example, propane to act as an intermediate fluid. The OTEC plant pumps the warm sea water into the reaction chamber and boils the intermediate fluid. This results in the intermediate fluid's vapor pushing the turbine of the engine, which thus generates electricity.  The vapor is then cooled down by putting in cold sea water.

“Open Cycle OTEC” is not that different from closed cycling, except in the Open Cycle there is no intermediate fluid. The sea water itself is the driver of the turbine engine in this OTEC format. Warm sea water found on the surface of the ocean is turned into a low-pressure vapor under the constraint of a vacuum. The low-pressure vapor is released in a focused area and it has the power to drive the turbine. To cool down the vapor and create desalinated water for human consumption, the deeper ocean's cold waters are added to the vapor after it has generated sufficient electricity.

“Hybrid Cycle OTEC” is really just a theory for the time being. It seeks to describe the way that we could make maximum usage of the thermal energy of the ocean's waters. There are actually two sub-theories to the theory of Hybrid Cycling. The first involves using a closed cycling to generate electricity. This electricity is in turn used to create the vacuum environment needed for open cycling. The second component is the integration of two open cyclings such that twice the amount of desalinated, potable water is created that with just one open cycle.

In addition to being used for producing electricity, a closed cycle OTEC plant can be utilized for treating chemicals. OTEC plants, both open cycling and close cycling kinds, are also able to be utilized for pumping up cold deep sea water which can then be used for refrigeration and air conditioning. Furthermore, during the moderation period when the sea water is surrounding the plant, the enclosed are can be used for mariculture and aquaculture projects such as fish farming. There is clearly quite an array of products and services that we could derive from this alternative energy source.

solar panels, solar system, electricity, solar, windmill, solar energy,
renewable energy, wind turbine, solar lights, renewable resources, wind energy,
solar power, solar charger, solar cell, sunpower, solar panel cost, solar battery,
solar water heater, photovoltaic, sources of energy, solar panel price, wind power,
electrical energy, electric generator, renewable energy sources, green energy, wind farm,
energy efficiency, green power, biomass energy

Sources of Energy for the Home Alternative Energy

www.a1steroidinformation.com

The trend toward homes that are powered by alternative energy sources, ranging from wind turbines and solar collection cells to hydrogen fuel cells and biomass gases, is one that needs to continue into the 21st century and beyond. We have great need of becoming more energy independent, and not having to rely on the supplying of fossil fuels from unstable nations who are often hostile to us and our interests. But even beyond this factor, we as individuals need to get “off the grid” and also stop having to be so reliant on government-lobbying giant oil corporations who, while they are not really involved in any covert conspiracy, nevertheless have a stranglehold on people when it comes to heating their  homes (and if not through oil, then heat usually supplied by grid-driven electricity, another stranglehold).

As Remi Wilkinson, Senior Analyst with Carbon Free, puts it, inevitably, the growth of distributed generation will lead to the restructuring of the retail electricity market and the generation, transmission and distribution infrastructure. The power providers may have to diversify their business to make up for revenues lost through household energy microgeneration. She is referring to the conclusions by a group of UK analysts, herself included among them, who call themselves Carbon Free. Carbon Free has been studying the ever-growing trend toward alternative energy-using homes in England and the West. This trend is being driven by ever-more government recommendation and sometimes backing of alternative energy research and development, the rising cost of oil and other fossil fuels, concern about environmental degradation, and desires to be energy independent. Carbon Free concludes that, assuming traditional energy prices remain at their current level or rise, microgeneration (meeting all of one's home's energy needs by installing alternative energy technology such as solar panels or wind turbines) will become to home energy supply what the Internet became to home communications and data gathering, and eventually this will have deep effects on the businesses of the existing energy supply companies.

Carbon Free's analyses also show that energy companies themselves have jumped in on the game  and seek to leverage microgeneration to their own advantage for opening up new markets for themselves. Carbon Free cites the example of electricity companies (in the UK) reporting that they are seriously researching and developing ideas for new geothermal energy facilities, as these companies see geothermal energy production as a highly profitable wave of the future. Another conclusion of Carbon Free is that solar energy hot water heating technology is an efficient technology for reducing home water heating costs in the long run, although it is initially quite expensive to install.  However, solar power is not yet cost-effective for corporations, as they require too much in the way of specialized plumbing to implement solar energy hot water heating. Lastly, Carbon Free tells us that installing wind turbines is an efficient way of reducing home electricity costs, while also being more independent. However, again this is initially a very expensive thing to have installed, and companies would do well to begin slashing their prices on these devices or they could find themselves losing market share.

solar system, electricity, energy, solar, solar panels, solar energy, renewable energy, wind turbine, geothermal energy, energy conservation, renewable resources, solar power, wind energy, solar cell, solar panel cost, sources of energy, solar water heater,
solar panel price, photovoltaic, wind power

Possible Consequences of Developing Nuclear Power and Developing Nuclear Power as Alternative Energy



Many researchers believe that harnessing the power of the atom in fission reactions is the most significant alternative energy resource that we have, for the fact of the immense power that it can generate.

Nuclear power plants are very “clean-burning” and their efficiency is rather staggering. Nuclear power is generated at 80% efficiency, meaning that the energy produced by the fission reactions is almost equal to the energy put into producing the fission reactions in the first place. There is not a lot of waste material generated by nuclear fission—although, due to the fact that there is no such thing as creating energy without also creating some measure of waste, there is some. The concerns of people such as environmentalists with regards to using nuclear power as an alternative energy source center around this waste, which is radioactive gases which have to be contained.

The radiation from these gases lasts for an extraordinarily long time, so it can never be released once contained and stored. However, the volume of this waste gas produced by the nuclear power plants is small in comparison to how much NOx (nitrous oxide—that is, air pollution) is caused by one day's worth of rush-hour traffic in Los Angeles. While the radiation is certainly the more deadly by far of the two waste materials, the radiation is also by far the easier of the two to contain and store. In spite of the concerns of the environmentalists, nuclear power is actually environmentally friendly alternative energy, and the risk of the contained radiation getting out is actually quite low. With a  relatively low volume of waste material produced, it should not be a difficult thing at all for storage and disposal solutions for the long term to be developed as technology advances.

The splitting of an atom releases energy in the forms of both heat and light. Atomic power plants control the fission reactions so that they don't result in the devastating explosions that are brought forth in atomic and hydrogen bombs. There is no chance of an atomic power plant exploding like a nuclear bomb, as the specialized conditions and the pure Plutonium used to unleash an atomic bomb's vicious force simply don't exist inside a nuclear power plant. The risk of a “meltdown” is very low. Although this latter event has happened a couple of times, when one considers that there are over 430 nuclear reactors spread out across 33 nations, and that nuclear reactors have been in use since the early 1950s, these are rare occurrences, and the events of that nature which have taken place were the fault of outdated materials which should have been properly kept up. Indeed, if nuclear energy could become a more widely accepted form of alternative energy, there would be little question of their upkeep being maintained. Currently, six states in America generate more than half of all their electrical energy needs through nuclear power, and the media are not filled with gruesome horror stories of the power plants constantly having problems.

solar panels, solar system, electricity, solar, windmill, solar energy,
renewable energy, wind turbine, solar lights, renewable resources, wind energy,
solar power, solar charger, solar cell, sunpower, solar panel cost, solar battery,
solar water heater, photovoltaic, sources of energy, solar panel price, wind power,
electrical energy, electric generator, renewable energy sources, green energy, wind farm,
energy efficiency, green power, biomass energy, Nuclear 

Consultants on Alternative Energy Source



The alternative energy consultants tell us that the transition from the petroleum-driven economy and society will not be a smooth one, on the whole. The amount of new technologies and infrastructures that need to be developed and built is staggering—even as Germany achieves powering 10% of the entire nation through the use of wind turbines and solar arrays, even as corporation after corporation is springing up, helped by various governments' tax breaks and rebate incentives, to drive forward the alternative energy mission. We have lain dormant on alternative energy on the grand scale for so long that we now have to scramble to play catch-up as access to cheap oil lurks ever closer to being a thing of the past.

Consultants on alternative energy also tell us that we need multilateral, international efforts in concert with one another in the direction of getting away from the heavy—almost total—dependence on fossil fuels. They are poised to become too expensive, burning them is polluting the atmosphere, and digging for them is disrupting the natural environment. We have about 30 years left of reasonably cheap oil and gas—and consultants say that within 20 years beyond that point, we had better be at least 90% independent of them. Unfortunately, at the present time the world is mostly not acting as if this is the case. The thirst for oil is growing, not slaking, and it is growing faster now than it did even in the 1970s.

One of the major problems of transition, the consultants point out, is that higher oil and gas prices stimulate the economy (This flies in the face of what many energy so-called “experts” and many members of the public believe, but the fact is that oil and gas are found and manufactured and transported by huge corporations who employ multitudes of staff workers and contractors; and from their huge profits their stocks remain lucrative on Wall Street.). Alternative, or “green” energy has to become more marketplace friendly, more profitable to investors and would-be employers. Wall Street does not like change; so there is resistance to this much-needed economic transition. It is because of this that many consultants are saying that we need an international, governments-backed initiative put into place; we are told that we cannot expect the new economy to spring forth overnight, all clean and polished and perfected, from the black ashes of the fossil fuel economy phoenix. 

It is most imperative that the wealthy, big-production nations such as the US, Japan, Western Europe, and others be the ones to spearhead the effort to get off of the fossil fuel dependence. Smaller, poorer nations are very simply never going to achieve the level of energy production through coal and oil that these nations have—for by the time they would be ready to, the cheap access to the fossil fuels will be gone, and they will never be able to sustain their newly-risen civilizations at that time as we have been able to do.  The time for transition from black to green is now.

Alternative Energy Sources in Japan

edition.cnn.com

Japan is a densely populated country, and that makes the Japanese market more difficult compared with other markets. If we utilize the possibilities of near-shore installations or even offshore installations in the future, that will give us the possibility of continued use of wind energy. If we go offshore, it's more expensive because the construction of foundations is expensive. But often the wind is stronger offshore, and that can offset the higher costs. We're getting more and more competitive with our equipment. The price—if you measure it per kilowatt-hour produced—is going lower, due to the fact that turbines are getting more efficient. So we're creating increased interest in wind energy. If you compare it to other renewable energy sources, wind is by far the most competitive today. If we're able to utilize sites close to the sea or at sea with good wind machines, then the price per kilowatt-hour is competitive against other sources of energy, go the words of Svend Sigaard, who happens to be president and CEO of the world's largest wind turbine maker, Vestas wind systems out of Denmark. Vestas is heavily involved in investments of capital into helping Japan expand its wind turbine power generating capacity. It is seeking to get offshore installations put into place in a nation that it says is ready for the fruits of investment into alternative energy research and development.

The Japanese know that they cannot become subservient to the energy supply dictates of foreign nations—World War II taught them that, as the US decimated their oil supply lines and crippled their military machine. They need to produce energy of their own, and they being an isolated island nation with few natural resources that are conducive to energy production as it is defined now are very open to foreign investment and foreign development as well as the prospect of technological innovation that can make them independent. Allowing corporations such as Vestas to get the nation running on more wind-produced energy is a step in the right direction for the Japanese people.

The production of energy through what is known as microhydoelectric power plants has also been catching on in Japan. Japan has a myriad rivers and mountain streams, and these are ideally suited places for the putting up of microhydroelectric power plants, which are defined by the New Energy and Industrial Technology Development Organization as power plants run by water which have a maximum output of 100 kilowatts or less. By comparison, “minihydroelectric” power plants can put out up to 1000 kilowatts of electrical energy.

In Japan, the small-scaled mini- and micro-hydroelectric power plants have been regarded for a considerable time as being suitable for creating electricity in mountainous regions, but they have through refinement come to be regarded as excellent for Japanese cities as well. Kawasaki City Waterworks, Japan Natural Energy Company, and Tokyo Electric Power Company have all been involved in the development of small-scale hydroelectric power plants within Japanese cities.

#tag
solar system, electricity, energy, solar panels, solar energy, renewable energy, wind turbine, geothermal energy, energy conservation. solar panels, solar system, electricity, solar, windmill, solar energy,
renewable energy, wind turbine, solar lights, renewable resources, wind energy,
solar power, solar charger, solar cell, sunpower, solar panel cost, solar battery,
solar water heater, photovoltaic, sources of energy, solar panel price, wind power,
electrical energy, electric generator, renewable energy sources, green energy, wind farm,
energy efficiency, green power, biomass energy

Renewable Energy University Research into Alternative Energy Source

http://e360.yale.edu

Decades of tree and biomass research jointly conducted by Florida Statue University and Shell Energy have resulted in the planting of the largest single “Energy Crop Plantation” in the entire United States. This Plantation spans approximately 130 acres and is home to over 250,000 planted trees including cottonwoods (native to the area) and eucalyptus (which are non-invasive) along with various row crops such as soybeans. This organization of “super trees” was brought into being as a result of the University's joint research with other agencies including Shell, the US Department of Energy, the Common Purpose Institute, and groups of various individuals who are working to develop alternative energy sources (those not dependent on fossil fuels) for the future. This research is focused on the planting and processing of biomass energy supplies from fast-growing crops known as “closed loop biomass” or simply “energy crops”. The project seeks to develop “power plants”  such as wood-pulp or wood-fiber providing plants; clean biogas to be used by industries; plants such as surgarcane which can be used for ethanol development; and crops such as soybeans for biodiesel fuel production.

University involvement in alternative energy research is also going on at Penn State University. At Penn State, special research is focused on the development of hydrogen power as a practical alternative energy source. The researchers involved are convinced that mankind is moving toward a hydrogen-fueled economy due to the needs for us to reduce air pollution and find other sources of energy besides petroleum to power up the United States. Hydrogen energy burns clean and can be endlessly renewed, as it can be drawn from water and crop plants. Hydrogen power would thus be a sustainable energy resource to be found within the US' own infrastructure while the world's supply of (affordable) oil peaks and begins to decline. The University seeks to help with the commercial development of hydrogen powered fuel cells, which would be usable in place of or in tandem with combustion engines for all of our motor vehicles.

When President Bush recently announced his alternative energy initiative, he determined that the government would develop five “Sun Grant” centers for concentrated research. Oregon State University has the honor of having been selected as one of these centers, and has been allocated government grants of $20 million for each of the next four years in order to carry out its mission. OSU will lead the way in researching alternative energy as it represents the interests of the Pacific Islands, the US' Pacific Territories, and nine western states. OSU President Edward Ray says, the research being conducted through OSU’s Sun Grant center will contribute directly to our meeting President Bush’s challenge for energy independence. Specific research into alternative energy being conducted at OSU by varios teams of scientists right now include a project to figure out how to efficiently convert such products as straw into a source of renewable biomass fuel, and another one aimed at studying how to efficiently convert wood fibers into liquid fuel.

solar panels, solar system, electricity, solar, windmill, solar energy,
renewable energy, wind turbine, solar lights, renewable resources, wind energy,
solar power, solar charger, solar cell, sunpower, solar panel cost, solar battery,
solar water heater, photovoltaic, sources of energy, solar panel price, wind power,
electrical energy, electric generator, renewable energy sources, green energy, wind farm,
energy efficiency, green power, biomass energy